Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(2): e24434, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293355

RESUMO

Lespedeza maximowiczii (LM), a member of the legume family, has tyrosinase inhibitory and estrogenic activities. However, its effects on skin-related biological activities remain unclear. Therefore, the present study aimed to explore the effects of LM flower absolute (LMFAb) on skin-related biological events, especially skin re-epithelization, barrier and moisturizing-related keratinocyte (HaCaT cell) responses. In this study, LMFAb was isolated from LM flowers via solvent extraction and its chemical composition analysis was performed using gas chromatography/mass spectrometry. 5-bromo-2'-deoxyuridine incorporation, Boyden chamber, sprout outgrowth, enzyme-linked immunosorbent, and Western blot assay were used to analyze the biological effects of LMFAb on HaCaT cells (a human epidermal keratinocyte cell line). Twelve components were identified in LMFAb. LMFAb promoted cell proliferation, migration, and sprout outgrowth in HaCaT cells. The absolute enhanced the activations of MAPKs (ERK1/2, JNK, and p38), PI3K and AKT proteins in HaCaT cells and elevated collagen type I and IV levels in HaCaT cell conditioned medium. In addition, LMFAb induced an increase in the expression levels of epidermal barrier proteins (filaggrin and involucrin) in HaCaT cells. Furthermore, LMFAb increased hyaluronan (HA) production and expression of HA synthases (HAS-1, HAS-2, and HAS-3) but decreased HYBID (HA binding protein involved in HA depolymerization) level in HaCaT cells. These findings demonstrate that LMFAb might promote skin re-epithelization, barrier and moisturizing-related beneficial responses in keratinocytes. This study suggests that LMFAb should be considered a potential starting material for the development of cosmetic or pharmaceutical agents that restore the functions of damaged skin.

2.
Plants (Basel) ; 12(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068567

RESUMO

Siegesbeckia glabrescens Makino (SGM) has been traditionally used to treat many disorders, including rheumatoid arthritis, hypertension, and acute hepatitis. However, the biological activities of SGM in skin remain unclear. The present study explored the effects of SGM flower absolute (SGMFAb) on skin-whitening-linked biological activities in B16BL6 cells. SGMFAb was extracted using hexane, and its composition was analyzed through gas chromatography/mass spectrometry analysis. The biological effects of SGMFAb on B16BL6 melanoma cells were detected via WST and BrdU incorporation assays, ELISA, and immunoblotting. SGMFAb contained 14 compounds. In addition, SGMFAb was noncytotoxic, attenuated the serum-induced proliferation of, and inhibited melanin synthesis and tyrosinase activity in α-MSH-exposed B16BL6 cells. SGMFAb also reduced the expressions of MITF (microphthalmia-associated transcription factor), tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 in α-MSH-exposed B16BL6 cells. Moreover, SGMFAb downregulated the activation of p38 MAPK, ERK1/2, and JNK in α-MSH-stimulated B16BL6 cells. In addition, SGMFAb reduced the expressions of three melanosome-transport-participating proteins (myosin Va, melanophilin, and Rab27a) in α-MSH-stimulated B16BL6 cells. These results indicate that SGMFAb positively influences skin whitening activities by inhibiting melanogenesis and melanosome-transport-related events in B16BL6 cells, and suggest that SGMFAb is a promising material for developing functional skin whitening agents.

3.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762395

RESUMO

Epidermal growth factor (EGF) receptor activation and related downstream signaling pathways are known to be one of the major mechanisms of the proliferation and migration of keratinocytes. The heparin-binding EGF-like growth factor (HB-EGF) binds to EGF receptors and stimulates keratinocyte proliferation and migration. Gintonin, a novel ginseng compound, is a lysophosphatidic acid (LPA) receptor ligand. Gintonin has skin-wound-healing effects. However, the underlying mechanisms for these gintonin actions remain unclear. In this study, we aimed to elucidate the involvement of EGFRs in gintonin-induced wound repair in HaCaT keratinocytes. In this study, a water-soluble tetrazolium salt-based assay, a modified Boyden chamber migration assay, and immunoblotting were performed. Gintonin increased EGF receptor activation in HaCaT cells. However, the gintonin-induced phosphorylation of the EGF receptor was markedly reduced via treatment with the LPA inhibitor Ki16425 or the EGF receptor inhibitor erlotinib. Gintonin-enhanced proliferation and migration were blocked by the EGF receptor inhibitors (erlotinib and AG1478). Additionally, gintonin stimulated the expression and release of HB-EGF in HaCaT cells. EGF receptor inhibitors blocked gintonin-enhanced HB-EGF expression. These results indicate that the wound-healing effects of gintonin are closely related to the collaboration between EGF receptor activation and HB-EGF release-mediated downstream signaling pathways.


Assuntos
Fator de Crescimento Epidérmico , Queratinócitos , Fator de Crescimento Epidérmico/farmacologia , Cloridrato de Erlotinib , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Receptores ErbB
4.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-37017451

RESUMO

Caragana sinica (CS; family Legume) was used as a medicinal material to treat neuralgia and arthritis in folk remedies and has been shown to have antioxidant, neuroprotective, and anti-apoptotic effects. However, CS is unknown for its biological activities related to skin. The present study explored the effects of CS flower absolute (CSFAb) on skin repair responses, viz., wound healing and anti-wrinkle-related responses using keratinocytes. CSFAb was extracted using hexane, and its composition was analyzed by GC/MS. The effects of CSFAb on human keratinocytes (HaCaT cells) were evaluated using Boyden chamber, sprouting, water-soluble tetrazolium salt, 5-bromo-2'-deoxyuridine incorporation, ELISA, zymography, and immunoblotting assays. GC/MS detected 46 components in CSFAb. In addition, in HaCaT cells, CSFAb increased the proliferation, migration, and sprout outgrowth and the phosphorylation of ERK1/2, JNK, p38 MAPK, and AKT, and also increased collagen type I and IV synthesis, reduced TNF-α-increased MMP-2 and MMP-9 activities, and upregulated hyaluronic acid (HA) and HA synthase-2 levels. These effects of CSFAb on wound healing and anti-wrinkle-related responses in keratinocytes suggest its potential use for skin repair and care preparations.

5.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36422527

RESUMO

Impatiens textori Miq. (ITM; family Balsaminaceae) is a traditional medicinal plant with many biological activities, which include anti-allergic, anti-inflammatory, and anti-pruritic properties. However, it remains to be determined whether ITM affects biological activities in the skin. Thus, we investigated the effects of ITM flower absolute (ITMFAb) extract on the biological activities of skin, especially those related to skin wound repair and whitening. ITMFAb was extracted with hexane, and its composition was determined through GC/MS. The biological activities of ITMFAb on HaCaT keratinocytes and B16BL6 melanoma cells were analyzed using a water-soluble tetrazolium salt, 5-bromo-2'-deoxyuridine incorporation, a Boyden chamber, an ELISA, a sprouting assay, and by immunoblotting. These analyses were performed in a range of ITMFAb concentrations that did not inhibit the viability of the cells (HaCaT, ≤400 µg/mL; B16BL6, ≤200 µg/m). Forty components were identified in ITMFAb. ITMFAb stimulated proliferation, migration, sprout outgrowth, and type I and IV collagen synthesis and upregulated the activations of ERK1/2, JNK, p38 MAPK, and AKT in HaCaT cells. In addition, ITMFAb attenuated the serum-induced proliferation of B16BL6 cells. ITMFAb inhibited melanin synthesis, tyrosinase activity, and expressions of MITF and tyrosinase in α-MSH-exposed B16BL6 cells. These findings indicate that ITMFAb has beneficial effects on wound repairing and whitening-linked responses in the skin and suggest the potential use of ITMFAb as a natural material for the development of skin wound repair and whitening agents.

6.
Molecules ; 27(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35268661

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory dermal disease with symptoms that include inflammation, itching, and dry skin. 1-Iodohexadecane is known as a component of Chrysanthemum boreale essential oil that has an inhibitory effect on AD-like lesions. However, its effects on AD-related pathological events have not been investigated. Here, we explored the effects of 1-iodohexadecane on AD lesion-related in vitro and in vivo responses and the mechanism involved using human keratinocytes (HaCaT cells), mast cells (RBL-2H3 cells), and a 2,4-dinitrochlorobenzene (DNCB)-induced mouse model (male BALB/c) of AD. Protein analyses were performed by immunoblotting or immunohistochemistry. In RBL-2H3 cells, 1-iodohexadecane inhibited immunoglobulin E-induced releases of histamine and ß-hexosaminidase and the expression of VAMP8 protein (vesicle-associated membrane proteins 8; a soluble N-ethylmaleimide-sensitive factor attachment protein receptor [SNARE] protein). In HaCaT cells, 1-iodohexadecane enhanced filaggrin and loricrin expressions; in DNCB-treated mice, it improved AD-like skin lesions, reduced epidermal thickness, mast cell infiltration, and increased filaggrin and loricrin expressions (skin barrier proteins). In addition, 1-iodohexadecane reduced the ß-hexosaminidase level in the serum of DNCB-applied mice. These results suggest that 1-iodohexadecane may ameliorate AD lesion severity by disrupting SNARE protein-linked degranulation and/or by enhancing the expressions of skin barrier-related proteins, and that 1-iodohexadecane has therapeutic potential for the treatment of AD.


Assuntos
Dinitroclorobenzeno
7.
Plants (Basel) ; 11(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35161226

RESUMO

Salix koreensis Anderss (SKA) has been used traditionally to treat inflammation, pain, and edema. SKA has anti-inflammatory and antioxidant effects, but no study has examined its effects on skin wound healing. Here, we aimed to investigate the effects of the absolute extracted from SKA flower (SKAFAb) on skin wound healing-associated responses in keratinocytes. SKAFAb was produced using a solvent extraction method and its chemical composition was analyzed by gas chromatography/mass spectrometry. The effects of SKAFAb on HaCaT cells (a human epidermal keratinocyte cell line) were investigated using a Boyden chamber and 5-bromo-2'-deoxyuridine incorporation, sprout outgrowth, immunoblotting, enzyme-linked immunosorbent, and water-soluble tetrazolium salt assays. Sixteen constituents were identified in SKAFAb. SKAFAb promoted HaCaT cell proliferation, migration, and type I and IV collagen productions. SKAFAb increased sprout outgrowth and increased the phosphorylations of serine/threonine-specific protein kinase (Akt), c-Jun NH2-terminal kinase, extracellular signal-regulated kinase1/2, and p38 mitogen-activated protein kinase (MAPK) in HaCaT cells. These results indicate that SKAFAb promotes keratinocyte proliferation and migration, probably by activating Akt and MAPK signaling pathways, and induces collagen synthesis in keratinocytes. SKAFAb may be a promising material for promoting skin wound healing.

8.
Nat Prod Res ; 36(24): 6428-6432, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35184639

RESUMO

This study aimed to determine the effects of Erigeron annuus (L.) Pers. (EAP) flower absolute (EAPFAb) on neurotransmitter release-blocking events and muscle paralysis induced by botulinum neurotoxin type A (BoNT/A). For this study, EAPFAb was extracted from EAP flowers by solvent extraction and its composition was determined by GC/MS. Neurotransmitter release and SNARE protein expression were examined in PC12 cells by ELISA and immunoblotting. Rat hind limbs were tested for muscle paralysis. EAPFAb contained 23 components and prolonged the duration of BoNT/A-induced rat hind limb muscle paralysis. EAPFAb reduced neurotransmitter release induced by elevated extracellular potassium levels and attenuated SNARE protein expression in PC12 cells. These findings demonstrate that EAPFAb prolongs BoNT/A-induced muscle paralysis action, probably by inhibiting releases of neurotransmitters that are regulated by SNARE proteins in neural cells. EAPFAb may be a promising material for prolonging BoNT/A action.


Assuntos
Toxinas Botulínicas Tipo A , Erigeron , Ratos , Animais , Toxinas Botulínicas Tipo A/efeitos adversos , Erigeron/metabolismo , Proteínas SNARE/metabolismo , Paralisia/induzido quimicamente , Flores/metabolismo , Neurotransmissores/efeitos adversos , Músculos
9.
Molecules ; 26(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34684753

RESUMO

Angelica polymorpha Maxim. (APM) is used in traditional medicine to treat chronic gastritis, rheumatic pain, and duodenal bulbar ulcers. However, it is not known whether APM has epidermis-associated biological activities. Here, we investigated the effects of APM flower absolute (APMFAb) on responses associated with skin wound healing and whitening using epidermal cells. APMFAb was obtained by solvent extraction and its composition was analyzed by GC/MS. Water-soluble tetrazolium salt, 5-bromo-2'-deoxyuridine incorporation, Boyden chamber, sprouting, and enzyme-linked immunosorbent assays and immunoblotting were used to examine the effects of APMFAb on HaCaT keratinocytes and B16BL6 melanoma cells. APMFAb contained five compounds and induced keratinocyte migration, proliferation, and type IV collagen synthesis. APMFAb also induced the phosphorylations of ERK1/2, JNK, p38 mitogen-activated protein kinase, and AKT in keratinocytes. In addition, APMFAb decreased serum-induced B16BL6 cell proliferation and inhibited tyrosinase expression, melanin contents, and microphthalmia-associated transcription factor expression in α-melanocyte-stimulating hormone-stimulated B16BL6 cells. These findings demonstrate that APMFAb has beneficial effects on skin wound healing by promoting the proliferation, migration, and collagen synthesis of keratinocytes and on skin whitening by inhibiting melanin synthesis in melanoma cells. Therefore, we suggest that APMFAb has potential use as a wound healing and skin whitening agent.


Assuntos
Angelica/metabolismo , Extratos Vegetais/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Flores/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Melaninas/biossíntese , Melaninas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo
10.
Int J Mol Sci ; 22(18)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34576317

RESUMO

Gintonin, a novel compound of ginseng, is a ligand of the lysophosphatidic acid (LPA) receptor. The in vitro and in vivo skin wound healing effects of gintonin remain unknown. Therefore, the objective of this study was to investigate the effects of gintonin on wound healing-linked responses, especially migration and proliferation, in skin keratinocytes HaCaT. In this study, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay, Boyden chamber migration assay, scratch wound healing assay, and Western blot assay were performed. A tail wound mouse model was used for the in vivo test. Gintonin increased proliferation, migration, and scratch closure in HaCaT cells. It also increased the release of vascular endothelial growth factor (VEGF) in HaCaT cells. However, these increases, induced by gintonin, were markedly blocked by treatment with Ki16425, an LPA inhibitor, PD98059, an ERK inhibitor, 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester), a calcium chelator, and U73122, a PLC inhibitor. The VEGF receptor inhibitor axitinib also attenuated gintonin-enhanced HaCaT cell proliferation. Gintonin increased the phosphorylation of AKT and ERK1/2 in HaCaT cells. In addition, gintonin improved tail wound healing in mice. These results indicate that gintonin may promote wound healing through LPA receptor activation and/or VEGF release-mediated downstream signaling pathways. Thus, gintonin could be a beneficial substance to facilitate skin wound healing.


Assuntos
Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Extratos Vegetais/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Panax/química , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
11.
Chem Biodivers ; 18(10): e2100383, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34405949

RESUMO

Miscanthus sinensis var. purpurascens (MSP, flame grass) is found in Korea, Japan, and China, and its biological activities include anti-cancer, detoxifying, vasodilatory, antipyretic, and diuretic effects. However, no study has investigated the effects of MSP on skin-related biological activities. In this study, we explored the effects of the absolute extracted from the MSP flowers (MSPFAb) on skin wound healing- and whitening-related responses in keratinocytes or melanocytes. MSPFAb contained 6 components and induced the proliferation, migration, and syntheses of type I and IV collagens in keratinocytes. MSPFAb also increased the phosphorylations of serine/threonine-specific protein kinase, p38 mitogen-activated protein kinase, and extracellular signal-regulated kinase1/2 in keratinocytes. In addition, treatment with MSPFAb decreased serum-induced melanoma cell proliferation and inhibited tyrosinase activity and melanin contents in α-MSH-stimulated melanoma cells. Taken together, this study indicates MSPFAb may promote wound healing- and whitening-associated activities in dermal cells, and suggests that it has potential use as a wound healing and skin whitening agent.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Flores/química , Extratos Vegetais/farmacologia , Poaceae/química , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Células Tumorais Cultivadas
12.
In Vivo ; 35(3): 1521-1528, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33910830

RESUMO

BACKGROUND/AIM: This study aimed to investigate the usefulness of in vivo bioluminescence imaging (BLI) to examine the role of matrix metalloproteinases (MMP)-2 and MMP-9 activation in the development and healing of ethanol-induced damage in the cornea of mice. MATERIALS AND METHODS: Mouse corneal injury was induced by topical treatment with 20% ethanol. BLI was obtained from the ocular region of mice intravenously injected with an active-MMP-2/9 probe. In vivo results were validated in primary corneal epithelial cells. RESULTS: BLI indicated that treatment of the eye with 20% ethanol elevated MMP-2/9 activity, which was inhibited by the application of eye drops (hyaluronic acid and serum). Treatment of corneal epithelial cells with 20% ethanol-increased the activities of MMP-2 and MMP-9, which were also inhibited by eye drops. CONCLUSION: BLI can be applied in vivo in mice with corneal injury to examine the activity of MMPs and clarify the efficacy of eye drops.


Assuntos
Etanol , Metaloproteinase 2 da Matriz , Animais , Córnea , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Metaloproteinases da Matriz , Camundongos
13.
Chem Biodivers ; 18(4): e2001051, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33738961

RESUMO

Smilax china (SC) has pharmacological effects including anti-inflammatory activity, but its effects on skin wound healing and skin barrier function have not been investigated. Here, we investigated the effects of absolute extracted from SC flowers (SCF) on skin wound healing-linked responses and functional skin barrier proteins using human epidermal keratinocytes (HaCaT cells). SCF absolute contained 20 components and was non-toxic to HaCaT cells. The absolute increased the proliferation, migration, and sprout outgrowth of HaCaT cells, and enhanced the activations of serine/threonine-specific protein kinase and extracellular signal-regulated kinase1/2. In addition, it increased the syntheses of type I and IV collagens and the expressions of skin barrier proteins (filaggrin and loricrin). These results indicate SCF absolute may has positive effects on skin wound healing by accelerating keratinocyte migration and proliferation activities and collagen synthesis, and on skin barrier function by upregulating barrier proteins in keratinocytes. We suggest SCF absolute to be considered as a potential means of promoting skin wound and barrier repair.


Assuntos
Flores/química , Queratinócitos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Pele/efeitos dos fármacos , Smilax/química , Cicatrização/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Proteínas Filagrinas , Humanos , Queratinócitos/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Pele/metabolismo
14.
Chem Biodivers ; 17(10): e2000506, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32889769

RESUMO

Paederia foetida (PF) has antidiarrheal, antidiabetic, and anti-inflammatory activities. However, its biological activities on skin remain unclear. In this study, we examined the effect of PF flower absolute (PFFA) on skin wound healing- and skin barrier-linked responses in human epidermal keratinocytes (HaCaT cells). PFFA contained 23 components and increased the proliferation and sprout outgrowth of HaCaT cells and modestly increased migration. PFFA enhanced the phosphorylation levels of extracellular signal-regulated kinase1/2, serine/threonine-specific protein kinase (AKT), and p38 mitogen-activated protein kinase (MAPK) in HaCaT cells, and upregulated type I and IV collagen synthesis and filaggrin (an epidermal barrier protein) expression in HaCaT cells. These findings suggest PFFA may promote skin wound repair by stimulating migratory and proliferative activities (probably through the AKT/MAPK pathway), collagen synthesis, and skin barrier repair by upregulating the expressions of filaggrin in epidermal keratinocytes. Therefore, PFFA may be useful for developing agents that enhance skin wound and barrier-repair functions.


Assuntos
Flores/química , Queratinócitos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rubiaceae/química , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Proteínas Filagrinas , Humanos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Pele/patologia
15.
Pflugers Arch ; 472(5): 571-581, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32382986

RESUMO

Fetuin-B is a serum protein linked to the regulation of physiological or pathophysiological events such as fertility, energy metabolism, and liver disease. Recently, fetuin-B has been reported to be involved in the modulation of the rupture of atherosclerotic plaques associated with acute myocardial infarction. However, the exact mechanism involved in the modulation of atherosclerotic plaque rupture event by fetuin-B is not fully elucidated yet. In the present study, we investigated whether fetuin-B could influence atherosclerotic plaque rupture through vascular smooth muscle cells (VSMCs). Immunoprecipitation assay using membrane proteins from VSMCs revealed that fetuin-B tightly bound to transforming growth factor-ß receptor (TGF-ßR). Fetuin-B treatment elevated TGF-ßR signals (e.g., phosphorylation of Smad2 and Smad3) in VSMCs. Fetuin-B also stimulated nuclear translocation of phosphorylated Smads. Phosphorylation of Smad and its nuclear translocation by treatment with fetuin-B were inhibited in VSMCs by treatment with SB431542, a selective inhibitor of TGF-ßR. Fetuin-B enhanced expression levels of plasminogen activator inhibitor-1 (PAI-1) and matrix metalloproteinase-2 (MMP-2) in VSMCs through its epigenetic modification including recruitments of both histone deacetylase 1 and RNA polymerase II. These epigenetic alterations in VSMCs were also inhibited by treatment with SB431542. In vivo administration of fetuin-B protein increased expression levels of PAI-1 and MMP-2 in the vascular plaque. However, these increases in expression were inhibited by the administration of SB43154. These results indicate that fetuin-B may modulate vascular plaque rupture by promoting expression of PAI-1 and MMP-2 in VSMCs via TGF-ßR-mediated Smad pathway.


Assuntos
Fetuína-B/metabolismo , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/metabolismo , Animais , Benzamidas/farmacologia , Vasos Sanguíneos/citologia , Células Cultivadas , Dioxóis/farmacologia , Humanos , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo
16.
Chem Biodivers ; 17(7): e2000227, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32383528

RESUMO

Zea mays L. (ZM) has cytotoxic and anti-inflammatory activities, but its biological activities such as skin regeneration and wound healing in human skin have not been reported. In the present study, we tested the effects of ZM flower (ZMF) absolute on proliferation and migration of human keratinocytes (HaCaTs) and identified its components by using gas chromatography/mass spectrometry (GC/MS) analysis. GC/MS analysis revealed that the ZMF absolute contained 13 constituents, and it increased HaCaT proliferation and migration. The ZMF absolute enhanced the phosphorylation levels of serine/threonine-specific protein kinase (Akt), p38 mitogen-activated protein kinase (MAPK), and extracellular signal-regulated kinase1/2 in HaCaTs. In addition, the absolute induced an increase in sprout outgrowth of HaCaTs. The present study reports for the first time that ZMF absolute may promote skin wound healing and/or skin regeneration by stimulating proliferative and migratory activities in dermal keratinocytes through the Akt/MAPK pathway. Therefore, ZMF absolute may be a promising natural material for the use in skin regeneration and/or wound healing applications.


Assuntos
Flores/química , Queratinócitos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Zea mays/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Pele/efeitos dos fármacos , Relação Estrutura-Atividade , Cicatrização/efeitos dos fármacos
17.
Molecules ; 25(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230890

RESUMO

Statins such as simvastatin have many side effects, including muscle damage, which is known to be the most frequent undesirable side effect. Lysophosphatidic acid (LPA), a kind of biolipid, has diverse cellular activities, including cell proliferation, survival, and migration. However, whether LPA affects statin-linked muscle damage has not been reported yet. In the present study, to determine whether LPA might exert potential protective effect on statin-induced myocyotoxicity, the effect of LPA on cytotoxicity in rat L6 myoblasts exposed to simvastatin was explored. Viability and apoptosis of rat L6 myoblasts were detected via 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5- [(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) assay and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, respectively. Protein expression levels were detected via Western blotting. Simvastatin decreased viability of L6 cells. Such decrease in viability was recovered in the presence of LPA. Treatment with LPA suppressed simvastatin-induced apoptosis in L6 cells. In addition, treatment with LPA receptor inhibitor Ki16425, protein kinase C (PKC) inhibitor GF109203X, or intracellular calcium chelator BAPTA-AM attenuated the recovery effect of LPA on simvastatin-induced L6 cell toxicity. These findings indicate that LPA may inhibit simvastatin-induced toxicity in L6 cells probably by activating the LPA receptor-PKC pathway. Therefore, LPA might have potential as a bioactive molecule to protect muscles against simvastatin-induced myotoxicity.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Lisofosfolipídeos/farmacologia , Mioblastos/efeitos dos fármacos , Proteína Quinase C/metabolismo , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Sinvastatina/efeitos adversos , Animais , Cálcio/metabolismo , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Indóis/farmacologia , Isoxazóis/farmacologia , Maleimidas/farmacologia , Mioblastos/metabolismo , Propionatos/farmacologia , Proteína Quinase C/antagonistas & inibidores , Ratos , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinvastatina/farmacologia , Proteína X Associada a bcl-2/metabolismo
18.
Planta Med ; 86(5): 348-355, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32045946

RESUMO

Digitaria ciliaris is widely reported to be a problematic weed in agricultural areas and is mainly used as an indicator plant for the development of herbicides. However, its bioactivities on skin regeneration and wound healing have not been investigated. In the present study, we investigated the effects of D. ciliaris flower absolute on skin wound healing and skin regeneration-related events, that is, proliferation, migration, and collagen biosynthesis, in human fibroblasts and keratinocytes. For this study, we extracted absolute from the D. ciliaris flower by solvent extraction and identified the composition of D. ciliaris flower absolute using GC/MS analysis. We also tested the effect of D. ciliaris flower absolute in CCD986sk fibroblasts and/or HaCaT keratinocytes using the WST assay and 5-bromo-2'-deoxyuridine incorporation assay, Boyden chamber assay, ELISA, sprouting assay, and immunoblotting. GC/MS analysis of D. ciliaris flower absolute revealed that it contained 15 compounds. The absolute increased the proliferations of keratinocytes and fibroblasts and the migration of fibroblasts but did not affect cell viabilities. In addition, it enhanced the syntheses of type I and IV collagen in fibroblasts, but not in keratinocytes. The sprouting assay showed increased sprout outgrowth of fibroblasts. In addition, D. ciliaris flower absolute induced the phosphorylation of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in fibroblasts. These results indicate that D. ciliaris flower absolute may promote skin wound healing/regeneration by inducing the proliferation, migration, and collagen synthesis of fibroblasts, as well as the proliferation of keratinocytes. Therefore, D. ciliaris flower absolute may be a potential natural source for cosmetic or pharmaceutical agents that promote skin wound healing/regeneration.


Assuntos
Digitaria , Queratinócitos , Movimento Celular , Proliferação de Células , Fibroblastos , Flores , Humanos , Extratos Vegetais , Pele , Cicatrização
19.
Int J Mol Sci ; 20(19)2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597276

RESUMO

Chrysanthemum boreale Makino essential oil (CBMEO) has diverse biological activities including a skin regenerating effect. However, its role in muscle atrophy remains unknown. This study explored the effects of CBMEO and its active ingredients on skeletal muscle atrophy using in vitro and in vivo models of muscle atrophy. CBMEO reversed the size decrease of L6 myoblasts under starvation. Among the eight monoterpene compounds of CBMEO without cytotoxicity for L6 cells, sabinene induced predominant recovery of reductions of myotube diameters under starvation. Sabinene diminished the elevated E3 ubiquitin ligase muscle ring-finger protein-1 (MuRF-1) expression and p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase1/2 (ERK1/2) phosphorylations in starved myotubes. Moreover, sabinene decreased the increased level of reactive oxygen species (ROS) in myotubes under starvation. The ROS inhibitor antagonized expression of MuRF-1 and phosphorylation of MAPKs, which were elevated in starved myotubes. In addition, levels of muscle fiber atrophy and MuRF-1 expression in gastrocnemius from fasted rats were reduced after administration of sabinene. These findings demonstrate that sabinene, a bioactive component from CBMEO, may attenuate skeletal muscle atrophy by regulating the activation mechanism of ROS-mediated MAPK/MuRF-1 pathways in starved myotubes, probably leading to the reverse of reduced muscle fiber size in fasted rats.


Assuntos
Monoterpenos Bicíclicos/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
20.
Gen Physiol Biophys ; 38(6): 505-512, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31588917

RESUMO

In a previous study, we produced antibodies from rats immunized with human umbilical vein endothelial cells (HUVECs) and determined the vascular function of the monoclonal antibodies. However, unanswered question remains still about their role in vascular function. The current study explored vasoreactivity, in particular, focusing on the vascular contractility of a functional antibody against proteins expressed on the plasma membrane of HUVECs developed in a previous study. Among the antibodies developed, A-7 significantly attenuated endothelium-dependent vasorelaxation in response to acetylcholine (ACh) but not to sodium nitroprusside or histamine. In addition, the A-7 antibody did not affect norepinephrine-stimulated contraction in both endothelium-intact and -denuded aorta. Immunocytochemical and immunoblotting analyses showed that A-7 attenuated ACh-increased expression of ACh receptor on the plasma membrane of HUVECs. These findings suggest that the monoclonal A-7 antibody may act as an inhibitor of endothelium-dependent vasorelaxation, probably in part via downregulation of ACh receptor expression.


Assuntos
Células Endoteliais , Veias Umbilicais , Vasodilatação , Animais , Anticorpos Monoclonais , Endotélio Vascular , Humanos , Óxido Nítrico , Ratos , Receptores Colinérgicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...